Die neuesten Beiträge für die Methodenlehre im Bachelor und Master
In der multiplen Regression haben wir uns bisher mit Modellen beschäftigt, die den linearen Zusammenhang zwischen einer abhängigen Variablen und einer Reihe von unabhängigen Variablen abbilden. In dieser Sitzung werden wir uns nun mit nichtlinearen Effekten in Regressionsmodellen befassen, insbesondere mit quadratischen Zusammenhängen und logaritmischen Effekten. Diese Sitzung basiert zum Teil auf der Literatur aus Eid et al. (2017) Kapitel 19 (insbesondere 19.9).
In den letzten Sitzungen haben wir gesehen, wie wir ein Modell für eine Multiple Regression in R
aufstellen und verschiedene Modelle gegeneinander testen können. Besonders bei der Nutzung von Inferenzstatistik wissen wir aber auch, dass genutzte statistische Verfahren häufig Voraussetzungen an die Daten mitbringen. Das Thema der heutigen Sitzung ist daher die Überprüfung von Voraussetzungen im Rahmen der Regressionsdiagnostik. In Statistik I hatten wir bereits im Beitrag zur Multiplen Regression die fünf grundlegenden Voraussetzungen besprochen:
Nachfragen, Anmerkungen oder Wünsche?