Die neuesten Beiträge für die Methodenlehre im Bachelor und Master
In der letzten Sitzung haben wir die einfaktorielle Varianzanalyse behandelt. Die spezifische Benennung als einfaktoriell verdeutlicht schon, dass wir hier ansetzen und Erweiterungen durch die Aufnahme von mehr Faktoren vornehmen können. In dieser Sitzung geht es vor allem um die zweifaktorielle Varianzanalyse - also das Vorliegen von zwei Faktoren. Ziel dieser Analyse ist es, gleichzeitig Gruppenunterschiede auf zwei Variablen zu untersuchen und dabei zu überprüfen, ob Kombinationen von Gruppen besondere Auswirkungen haben. Für weitere Inhalte siehe bspw. auch Eid, Gollwitzer und Schmitt (2017, Kapitel 13 und insb. 13.2 und folgend).
In den letzten beiden Sitzungen ging es darum Unterschiede zwischen Personen zu untersuchen, indem wir Mittelwertsunterschiede zwischen verschiedenen Gruppen von Personen geprüft haben (in englischsprachiger Literatur wird dies als between subjects ANOVA bezeichnet). In dieser Sitzung soll es darum gehen, Unterschiede innerhalb von Personen (im Englischen within subjects ANOVA) mithilfe der ANOVA mit Messwiederholung zu untersuchen. Diese Unterschiede können dabei z.B. dadurch entstehen, dass wir unterschiedliche Messzeitpunkte untersuchen. Aber die Messwiederholung muss nicht zwingend durch Zeit zustande kommen - andere Möglichkeiten der Messwiederholung sind z.B. unterschiedliche Tests oder Informationsquellen. Wir könnten z.B. Verhaltensauffälligkeiten von Kindern erheben, indem wir sie durch Psychotherapeutinnen und -therapeuten beobachten lassen und die Eltern sowie die Kita-Erzieher und -Erzieherinnen befragen. Auch so messen wir wiederholt das Gleiche und können untersuchen, inwiefern sich hierbei mittlere Unterschiede zeigen. Die Analyse von Messwiederholungen lässt sich zudem mit der Untersuchung von den bereits behandelten between subject Effekten kombinieren. Mehr zur ANOVA mit Messwiederholung finden Sie in Eid, Gollwitzer und Schmitt (2017, Kapitel 14 und insb. 14.1 und folgend)
.
In der letzten Sitzung wurden faktoranalytische Verfahren für Datenexploration behandelt. Die Ergebnisse der EFA sind datengesteuert: welche Items welchen Faktoren zugeordnet werden, wie viele Faktoren genutzt werden, wie stark der Zusammenhang zwischen Item und Faktor ist, das alles sind Dinge, die aus den Daten heraus entschieden werden. In dieser Sitzung betrachten wir das Vorgehen, wenn in der Faktorenanalyse von einem konkreten, theoretisch fundierten Modell ausgegangen wird und dieses anhand empirischer Daten geprüft werden soll. Ganz im Popper’schen Sinn lässt sich nur durch ein solches Vorgehen wissenschaftliche Erkenntnis gewinnen.
Nachfragen, Anmerkungen oder Wünsche?