Lehre
Statistik I
Statistik II
Multivariat
KliPPs Methoden
Weitere Lehrinhalte
LIFOS
LIFOS Grundlagen
LIFOS Extras
Projekte
Verbentrainer
Trends
Casino
WhatsApp
Workshops
ggplotting
RefresheR
KiJu
FDZ
Extras
DYNAMIC
Git
Bayes
tigeR
Independence
The student's guide to independence in R
Contents
1.
Introduction
2.
How do I get started?
3.
Common analysis steps
3.1.
I. Reading raw data
3.1.1.
An aside about file paths
3.2.
II. Cleaning up and preprocessing raw data
3.3.
III. Aggregate raw data
3.4.
IV. Descriptive analysis and plots
3.4.1.
Descriptive stastics: Getting a sense of your data
3.4.2.
Confidence intervals
3.4.3.
Data visualisation magic
3.4.3.1.
Boxplots
3.4.3.2.
Adding titles and labels
3.4.3.3.
Spaghetti plots
3.4.3.4.
Fancy Barplots
3.4.3.5.
Visualizing correlations with scatter plots
3.5.
V. Inferential analysis
3.5.1.
Normality assumption
3.5.2.
Homogeneity of variance assumption
3.5.3.
Correlation
3.5.4.
Regression
3.5.5.
t-test
3.5.6.
One-way ANOVA
3.5.7.
Repeated measures ANOVA
3.5.8.
Mixed designs (within/between factors)
4.
General notes on
R
|
4.1.
Interface
4.2.
Install and import packages
4.3.
Let’s start and create a few objects
4.3.1.
First objects in
R
4.3.2.
Arithmetic operations
4.3.3.
Let’s turn to somewhat more advanced stuff
4.4.
What are
if
statements?
4.5.
And what about
loops
?
Introduction
Dear students,
Sophie Nolden
Zuletzt aktualisiert am 17. Feb.. 2025
Independence
Inhalte