In der letzten Sitzung haben wir unter anderem Korrelationen zwischen zwei Variablen behandelt. Zur Wiederholung: Mithilfe einer Korrelation kann die Stärke des Zusammenhangs zwischen zwei Variablen quantifiziert werden. Dabei haben beide Variablen den gleichen Stellenwert, d.h. eigentlich ist es egal, welche Variable die x- und welche Variable die y-Variable ist. Wir haben außerdem Methoden kennengelernt, mit denen der Einfluss einer (oder mehrerer) Drittvariablen kontrolliert werden kann; die Partial- und Semipartialkorrelation. In der heutigen Sitzung wollen wir uns hingegen mit gerichteten Zusammenhängen, d.h. mit Regressionen, beschäftigen.
In dieser Sitzung beschäftigen wir uns mit Pfadanalysen und Strukturgleichungsmodellen (engl. Structural Equation Modeling, SEM). Diese werden beispielsweise in Werner, Schermelleh-Engel, Gerhard und Gäde (2016, Kapitel 17 in Döring & Bortz, 2016) oder Eid, Gollwitzer und Schmitt (2017) in Kapitel 26 ausführlich beschrieben.
In einer Multi-Sample-Analysis wird in mehreren Gruppen gleichzeitig ein Strukturgleichungsmodell geschätzt. Wir könnten uns bspw. fragen, ob die gleichen Beziehungen zwischen Zeitdruck, Emotionaler Erschöpfung und psychosomatischen Beschwerden, wie wir sie in der letzten Sitzung zu SEM beobachtet haben, gleichermaßen für Männer und Frauen gelten. Im Datensatz StressAtWork der SEM Sitzung ist die Variable sex enthalten. Hier sind Frauen mit 1 und Männer mit 2 kodiert. Wir können diesen wie gewohnt laden:
Sie können den im Folgenden verwendeten Datensatz “StressAtWork.rda” hier herunterladen.
In den letzten Sitzungen haben wir gesehen, wie wir ein Modell für eine Multiple Regression in R aufstellen und verschiedene Modelle gegeneinander testen können. Besonders bei der Nutzung von Inferenzstatistik wissen wir aber auch, dass genutzte statistische Verfahren häufig Voraussetzungen an die Daten mitbringen. Das Thema der heutigen Sitzung ist daher die Überprüfung von Voraussetzungen im Rahmen der Regressionsdiagnostik. In Statistik I hatten wir bereits im Beitrag zur Multiplen Regression die fünf grundlegenden Voraussetzungen besprochen: