In der letzten Sitzung haben wir unter anderem Korrelationen zwischen zwei Variablen behandelt. Zur Wiederholung: Mithilfe einer Korrelation kann die Stärke des Zusammenhangs zwischen zwei Variablen quantifiziert werden. Dabei haben beide Variablen den gleichen Stellenwert, d.h. eigentlich ist es egal, welche Variable die x- und welche Variable die y-Variable ist. Wir haben außerdem Methoden kennengelernt, mit denen der Einfluss einer (oder mehrerer) Drittvariablen kontrolliert werden kann; die Partial- und Semipartialkorrelation. In der heutigen Sitzung wollen wir uns hingegen mit gerichteten Zusammenhängen, d.h. mit Regressionen, beschäftigen.
In den letzten Sitzungen haben wir gesehen, wie wir ein Modell für eine Multiple Regression in R
aufstellen und verschiedene Modelle gegeneinander testen können. Besonders bei der Nutzung von Inferenzstatistik wissen wir aber auch, dass genutzte statistische Verfahren häufig Voraussetzungen an die Daten mitbringen. Das Thema der heutigen Sitzung ist daher die Überprüfung von Voraussetzungen im Rahmen der Regressionsdiagnostik. In Statistik I haben wir bereits folgende Voraussetzungen der multiplen Regression besprochen:
In der multiplen Regression haben wir uns bisher mit Modellen beschäftigt, die den linearen Zusammenhang zwischen einer abhängigen Variablen und einer Reihe von unabhängigen Variablen abbilden. Die additive Verknüpfung der unabhängigen Variablen ermöglichte jedoch bisher keine Interaktion, sodass der Einfluss einer unabhängigen Variablen auf die abhängige Variable unabhängig von den Ausprägungen der anderen Prädiktoren war. In dieser Sitzung werden wir uns nun mit nichtlinearen Effekten in Regressionsmodellen befassen, insbesondere mit (1) quadratischen Verläufen, (2) Interaktionseffekten und (3) exponentiellen Verläufen. Diese Sitzung basiert zum Teil auf der Literatur aus Eid et al. (2017) Kapitel 19 (insbesondere 19.9).
Bisher hatten wir mittels Regressionsanalysen lineare Beziehungen modelliert. In der Sitzung zur quadratischen und moderierte Regresssion kamen dann im Grunde quadratische Effekte mit hinzu. Wir können unser Wissen über Regressionen allerdings auch nutzen um nichtlineare Effekte zu modellieren. Wie das geht und was zu beachten ist, schauen wir uns im Folgenden an. Dazu laden wir zunächst altbekannte Pakete: